Controllability for a scalar conservation law with nonlocal velocity

نویسندگان

  • Jean-Michel Coron
  • Zhiqiang Wang
چکیده

a r t i c l e i n f o a b s t r a c t MSC: 35L65 93B05 93C20 Keywords: State controllability Nodal profile controllability Conservation law Nonlocal velocity Re-entrant manufacturing system In this paper, we study the state controllability and nodal profile controllability for a scalar conservation law, with a nonlocal velocity, that models a highly re-entrant manufacturing system as encountered in semiconductor production. We first prove a local state controllability result, i.e., there exists a control that drives the solution from any given initial data to any desired final data in a certain time period, provided that the initial and final data are both close to a given equilibrium ρ 0. We also obtain a global state controllability result for the same system, where there is no limitation on the distance between the initial and final data. Finally, we prove a nodal profile controllability result, i.e., there exists a control under which the solution starts from any initial data reaches exactly any given out-flux over a fixed time period.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Output Feedback Stabilization for a Scalar Conservation Law with a Nonlocal Velocity

In this paper, we study the output feedback stabilization for a scalar conservation law with a nonlocal velocity that models a highly re-entrant manufacturing system as encountered in semiconductor production. By spectral analysis, we obtain a complete result on the exponential stabilization for the linearized control system. Moreover, by using a Lyapunov function approach, we also prove the ex...

متن کامل

Numerical Solution of a Scalar One-Dimensional Monotonicity-Preserving Nonlocal Nonlinear Conservation Law

Abstract In this paper, we present numerical studies of a recently proposed scalar nonlocal nonlinear conservation law in one space dimension. The nonlocal model accounts for nonlocal interactions over a finite horizon and enjoys maximum principle, monotonicity-preserving and entropy condition on the continuum level. Moreover, it has a well-defined local limit given by a conventional local cons...

متن کامل

Solutions for a Nonlocal Conservation Law with Fading Memory

Global entropy solutions in BV for a scalar nonlocal conservation law with fading memory are constructed as limits of vanishing viscosity approximate solutions. The uniqueness and stability of entropy solutions in BV are established, which also yield the existence of entropy solutions in L∞ while the initial data is only in L∞. Moreover, if the memory kernel depends on a relaxation parameter ε ...

متن کامل

Exact Controllability of Scalar Conservation Laws with an Additional Control in the Context of Entropy Solutions

HAL is a multidisciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt età la diffusion de documents scientifiques de niveau r...

متن کامل

A new total variation diminishing implicit nonstandard finite difference scheme for conservation laws

In this paper, a new implicit nonstandard finite difference scheme for conservation laws, which preserving the property of TVD (total variation diminishing) of the solution, is proposed. This scheme is derived by using nonlocal approximation for nonlinear terms of partial differential equation. Schemes preserving the essential physical property of TVD are of great importance in practice. Such s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011